quinta-feira, 4 de novembro de 2010

POLÍGONO REGULAR

1- Polígono Inscrito
É inscrito quando os vértices são pontos da circunferência

2- Polígono Circunsecrito

É Circunscrito quando os lados sao tangentes a circunferência.


° Apótema de um polígono Regular

-> É um segmento de reta cuja extremidades é o centro da circunferência e o ponto médio ao lado do poligono.

-> É Sempre perpenticular ao lado.


DUAS TANGENTES

Relação entre duas tangentes


- O triângulo apresentado na imagem acima (ABP) é isósceles.
Isósceles pois tem dois lados congruentes,logo os dois lados, PA e PB irão ter as mesmas medidas.

RELAÇÃO ENTRE DUAS CORDAS DA CIRCUNFERÊNCIA E RELAÇÃO ENTRE DUAS SECANTES CONCORRENTES

A circunferência possui algumas importantes relações métricas envolvendo segmentos internos, secantes e tangentes. Através dessas relações obtemos as medidas procuradas.

Cruzamento entre duas cordas

O cruzamento de duas cordas na circunferência gera segmentos proporcionais, e a multiplicação entre as medidas das duas partes de uma corda é igual à multiplicação das medidas das duas partes da outra corda. Observe:
AP * PC = BP * PD

Exemplo 1
x * 6 = 24 * 8
6x = 192
x = 192/6
x = 32


Dois segmentos secantes partindo de um mesmo ponto

Em qualquer circunferência, quando traçamos dois segmentos secantes, partindo de um mesmo ponto, a multiplicação da medida de um deles pela medida de sua parte externa é igual à multiplicação da medida do outro segmento pela medida de sua parte externa. Observe:

RP * RQ = RT * RS

Exemplo 2
x * (42 + x) = 10 * (30 + 10)
x2 + 42x = 400
x2 + 42x – 400 = 0

Aplicando a forma resolutiva de uma equação do 2º grau:



Os resultados obtidos são x’ = 8 e x’’ = – 50. Como estamos trabalhando com medidas, devemos considerar somente o valor positivo x = 8.


Segmento secante e segmento tangente partindo de um mesmo ponto

Nesse caso, o quadrado da medida do segmento tangente é igual à multiplicação da medida do segmento secante pela medida de sua parte externa.
(PQ)2 = PS * PR

Exemplo 3
x2 = 6 * (18 + 6)
x2 = 6 * 24
x2 = 144
√x2 = √144
x = 12

CIRCUNFERÊNCIA E SEUS ELEMENTOS

Circunferência

A circunferência pode ser considerada uma linha curva fechada, onde a distância entre a extremidade e qualquer ponto da mesma possui medida igual.
Corda

Dada uma circunferência de centro O a pontos A, B, C e D pertencentes a ela, temos os seguintes elementos: AB e CD.
Os segmentos AB e CD têm suas extremidades nessa circunferência. Dizemos que os segmentos determinados por dois pontos quaisquer da circunferência são cordas da circunferência.




Raio

Distância compreendida entre o centro e a extremidade da circunferência.



Diâmetro

Com base na figura anterior note que o segmento CD (corda) passa pelo centro da circunferência e se transforma no diâmetro da circunferência, também chamado de corda máxima.

Diâmetro da circunferência

É fácil perceber que a medida do diâmetro é o dobro da medida do raio. Se chamarmos D a medida do diâmetro e r a medida do raio, temos a seguinte relação:
D = 2 * r

Arco

Considere agora esta circunferência:



Observe que os pontos A e B dividem a circunferência em duas partes. Cada uma dessas partes é chamada arco de circunferência.

FUNÇÃO QUADRÁTICA

A Função Quadrática também pode ser chamada de Função do 2º grau.

Forma:  ax²+b+c   onde a \ne 0 \,\!

- Algumas regrinhas que devemos saber:

1.O sinal do "a" é que define a posição da concavidade.
Se o 'a' for negativo a concavidade vai ser voltada para baixo:

exemplo: 

Se o 'a' for positivo a concavidade vai ser voltada para cima:
exemplo:   

2.Todo "c" (coeficiente) cota o eixo Y (ordenada)
3.A linha representada por X é chamada de abscissas e por Y é chamada de ordenada.

CALCULAR O ZERO DA FUNÇÃO
- forma de delta e baskara

quinta-feira, 16 de setembro de 2010

FUNÇÃO DE 2 GRAU

A função do 2º grau, também denominada função quadrática, é definida pela expressão do tipo:
 
y = f(x) = ax² + bx + c, onde a, b e c são constantes reais e
Exemplos:
a) y=x²+3x+2 ( a=1; b=3; c=2 )
b) y=x² ( a=1; b=0; c=0 )
c) y=x²-4 ( a=1; b=0; c=-4 )
Gráfico de uma função do 2º grau:
 

O gráfico de uma função quadrática
é uma parábola

   Podemos visualizar uma parábola em um parque de diversões, simplesmente olhando para a montanha russa.
 

   Sua representação gráfica é dada em torno de eixos:
 

Representação gráfica
Exemplo:
Construa o gráfico da função y=x²:
[Sol] Como na função do 1º grau, basta atribuir valores reais para x, obtemos seus valores correspondentes para y.
 

x
y = f(x) = x²
-2
4
-1
1
0
0
1
1
2
4
3
9
   Notem que os pontos: A e A`, B e B`, C e C` são simétricos (estão a mesma distância do eixo de simetria). O ponto V representa o vértice da parábola, é a partir dele que determinamos todos os outros pontos.
Coordenadas do vértice
   A coordenada x do vértice da parábola pode ser determinada por .
   Exemplo: Determine as coordenada do vértice da parábola y=x²-4x+3
Temos: a=1, b=-4 e c=3
Logo, a coordenada x será igual a 2, mas e a coordenada y?
Simples: Vamos substituir o valor obtido da coordenada x e determinar o valor da coordenada y.
Assim, para determinarmos a coordenada y da parábola
y=x²-4x+3, devemos substituir o valor de x por 2.
y = (2)²-4.(2)+3 = 4-8+3=-1
Logo, as coordenadas do vértice serão V=(2,-1)
Portanto, para determinarmos as coordenadas do vértice de uma parábola, achamos o valor da coordenada x (através de x=-b/2a) e substituindo este valor na função, achamos a coordenada y!!!
Raízes (ou zeros) da função do 2º grau
Denominam-se raízes da função do 2º grau os valores de x para os quais ela se anula.
y=f(x)=0
Exemplo: na função y=x²-4x+3, que acima acabamos de determinar as coordenadas de seus vértices, as raízes da função serão x=1 e x`=3.
Vejamos o gráfico:
Notem que quando x=1 e x`=3, a parábola intercepta ("corta") o eixo x.
Como determinar a raiz ou zero da função do 2º grau?
Simplesmente aplicando a resolução de equações do 2º grau, já vista na seção anterior.
Exemplo: determine a raiz da função y=x²+5x+6:
Fazendo y=f(x)=0, temos x²+5x+6=0
Agora basta resolver a equação aplicando a fórmula de Bháskara.
x²+5x+6=0
Acharemos que x = -2 e x` = -3.
Concavidade da parábola
Explicarei esta parte com um simples desenho.


a>0
a<0
Os desenhos até que ficaram bonitinhos, mas isso não importa neste momento. O que nos importa agora é que quando a>0, a concavidade da parábola está voltada para cima (carinha feliz) e quando a<0, a parábola está voltada para baixo (carinha triste).
Exemplos:
y = f(x) = x² - 4
a = 1 >0

y = f(x) = -x² + 4
a = -1 < 0
[Nota] Quando a concavidade está voltada para cima (a>0), o vértice representa o valor mínimo da função. Quando a concavidade está voltada para baixo (a<0), o vértice representa o valor máximo.
Quando o discriminante é igual a zero
Quando o valor de , o vértice a parábola encontra-se no eixo x. A coordenada y será igual a zero.
Exemplo: y=f(x)=x²+2x+1
x²+2x+1=0

x=x`=-b/2a=-1
As coordenadas do vértice serão V=(-1,0)
Gráfico:
Quando o discrimintante é maior que zero
Quando o valor de , a parábola intercepta o eixo x em dois pontos. (São as raízes ou zeros da função vistos anteriormente).
Exemplo: y = f(x) = x²-4x+3
x²-4x+3=0
 
x=1, x`=3
Gráfico:
Quando o discriminante é menor que zero
Quando o valor de , a parábola não intercepta o eixo x. Não há raízes ou zeros da função.
Exemplo: y = f(x) = x²-x+2
x²-x+2=0
Gráfico:
Resumindo:
a>0
a>0
a>0

a<0
a<0
a<0
Esboçando o gráfico
Para finalizarmos (ufa!), vamos desenhar o gráfico da função
y=-x²-4x-3

1ª etapa: Raízes ou zeros da função
-x²-4x-3=0
Aplicando a fórmula de Bháskara
x=-1, x`=-3
2ª etapa: Coordenadas do vértice
Coordenada x (=-b/2a): -(-4)/2.(-1)=-2
Coordenada y: Basta substituir o valor de x obtido na função
y = -x²-4x-3 = -(-2)²-4.(-2)-3 = -4+8-3 = 1
Portanto, V=(-2,1)
3ª etapa: Concavidade da parábola
y=-x²-4x-3
Como a=-1<0, a concavidade estará voltada para baixo
Feito isso, vamos esboçar o gráfico: